1.题目要求
题目:最大连续子数组和(最大子段和)
问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。 -- 引用自《百度百科》2.实现代码
#includeusing namespace std;int sum(int a[] ,int count){ int b[100]; int i; int max; b[0] = a[0]; max = b[0]; for (i = 1; i < count; i++) { if (b[i - 1] > 0) b[i] = b[i - 1] + a[i]; else b[i] = a[i]; if (b[i] > max) max = b[i]; } return max;}int main(){ int count; int a[100]; int i; int max; cin >>count; for (i = 0; i < count; i++) { cin >> a[i]; } max = sum(a, count); cout << max; return 0;}
3.测试代码
程序流程图
条件组合 | 执行路径 |
---|---|
b[i-1]>0,b[i]>max | abdef |
b[i-1]<=0,b[i]>max | acdef |
b[i-1]>0,b[i]<=max | abdf |
b[i-1]<=0,b[i]<=max | acdf |
测试用例
a[]={1,5,9},max=15 a[]={-1,5,-1},max=5 a[]={-8,-2,-5,8},max=8 a[]={ -2,11,-4,13,-5,-2},max=20TEST_METHOD(TestMethod1) { int max, num[3] = { 1,5,9 }; max = sum(num, 3); Assert::AreEqual(max, 15); } TEST_METHOD(TestMethod2) { int max, num[3] = { -1,5,-1 }; max = sum(num, 3); Assert::AreEqual(max, 5); } TEST_METHOD(TestMethod3) { int max, num[4] = { -8,-2,-5,8 }; max = sum(num, 4); Assert::AreEqual(max, 8); } TEST_METHOD(TestMethod4) { int max, num[6] = { -2,11,-4,13,-5,-2 }; max = sum(num, 6); Assert::AreEqual(max, 20); }
4.测试结果